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Protein ab initio models predicted from sequence data alone

can enable the elucidation of crystal structures by molecular

replacement. However, the calculation of such ab initio

models is typically computationally expensive. Here, a

computational pipeline based on the clustering and truncation

of cheaply obtained ab initio models for the preparation of

structure ensembles is described. Clustering is used to select

models and to quantitatively predict their local accuracy,

allowing rational truncation of predicted inaccurate regions.

The resulting ensembles, with or without rapidly added side

chains, solved 43% of all test cases, with an 80% success rate

for all-� proteins. A program implementing this approach,

AMPLE, is included in the CCP4 suite of programs. It only

requires the input of a FASTA sequence file and a diffraction

data file. It carries out the modelling using locally installed

Rosetta, creates search ensembles and automatically performs

molecular replacement and model rebuilding.
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1. Introduction

Molecular replacement (MR) remains a popular and impor-

tant means of solving the phase problem as it allows the rapid

determination of crystal structures from native X-ray diffrac-

tion data. From the beginning of 2011 to the time of writing, it

accounted for almost 80% of submissions to the Protein Data

Bank (PDB). MR requires the availability of a protein struc-

ture that is sufficiently similar to the target to allow its

placement, in rotational and translation terms, within the

asymmetric unit. This placement produces approximate

phasing information, which is often of good enough quality to

allow manual or automatic refinement of the model. Tradi-

tionally, the protein structure used for the MR search will be

a homologous structure or a homology model of the target.

Pipelines are available that allow convenient automatic iden-

tification, preparation and processing of such search models

(Keegan & Winn, 2008; Schwarzenbacher et al., 2008; Long et

al., 2008). The success of MR depends on the latter being

sufficiently similar to the target. However, in many cases no

homologous structure is available or those available are

evolutionarily too distant. In order to address these situations,

ab initio (or de novo) models are increasingly becoming

considered as search models in molecular replacement. Ab

initio modelling attempts to predict three-dimensional struc-

tures of proteins in the absence of any guidance from known

homologous structures. Current ab initio methods such as

Rosetta (Shortle et al., 1998; Simons et al., 1997, 1999),

I-TASSER (Lee & Skolnick, 2007; Roy et al., 2010; Wu et al.,

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tz5014&bbid=BB44
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2007; Zhang, 2008) and QUARK (Xu & Zhang, 2012) work

initially with a reduced representation of the protein assem-

bled from suitable structural fragments obtained from

experimental structures deposited in the PDB and proceed to

a complete all-atom representation. At the fragment-assembly

stage, thousands of models (termed ‘decoys’) are clustered

and centroid representatives of large top clusters are consid-

ered as candidate fold predictions. The appearance of a large

top cluster at this stage is generally indicative of reliable

modelling (Shortle et al., 1998). Side chains may then be added

to selected decoys and the results refined under a more

realistic physics-based force field than is applied during frag-

ment assembly (Xu & Zhang, 2012). The CPU time required

to reach the initial fold stage is modest (less than 24 h for

sequences up to 120 residues), but the all-atom second stage

can be highly demanding depending on the sampling regime.

For Rosetta, the package that is used here, supercomputers or

distributed computing resources are typically required for the

second stage (Bradley et al., 2005; Das et al., 2007).

Use of ab initio models in MR has followed two tracks.

Firstly, an intensive all-atom modelling approach has been

employed to produce single search models of maximum

completeness and accuracy which first demonstrated the

potential of ab initio modelling for MR (Qian et al., 2007) and

later solved around one third of a small test set of 30 cases

(Das & Baker, 2009). However, the computational demands of

this approach (around 100 CPU days per case in the latter

study) place it out of reach of typical crystallography labora-

tories, despite attempts to reduce these demands (Shrestha et

al., 2011). More recently, we have demonstrated the feasibility

of a more economical approach in a small-scale pilot study,

which showed that polyalanine ‘decoys’ resulting from the

early fragment-assembly step in Rosetta could be assembled

into successful MR search models (Rigden et al., 2008;

Caliandro et al., 2009). For this, the most accurate decoys were

selected by reference to the crystal structure and bespoke

processed by combinations of clustering into ensembles, with

rapid side-chain addition and the truncation of inaccurate

portions. Crucially, we, like others (Qian et al., 2007), identi-

fied a correlation between structural diversity in the decoy set

and deviation from the native structure, in principle allowing

inaccurate regions to be rationally predicted and removed.

We present here a large-scale assessment of the suitability

of cheaply obtained ab initio decoys for automatic MR of

crystal structures of small proteins. Our previous ad hoc

processing has been replaced by automatic steps for gener-

ating a set of ensembles for use as MR search models. The

ensembles are automatically truncated to various degrees

based on local structure diversity and processed to contain

all, selected or no side chains. In contrast to the prevailing

approach attempting to generate a single, complete and

universally accurate search model, our method attempts to

extract and combine features which are likely to have reliable

phasing power from the thousands of decoys produced by ab

initio modelling. Such features may only represent a small part

of the protein target. We benchmarked the method against 295

test cases, resulting in a success rate of �43%. To facilitate the

broad adoption of our method, we have implemented it as the

software AMPLE (ab initio modelling of proteins for mole-

cular replacement). AMPLE constitutes an automatic pipeline

for the computation of suitable ab initio model ensembles,

their trialling in MR and subsequent rebuilding of the target

structure. Thereby, it allows routine, cost-effective structure

solution of the crystal structures of small proteins.

2. Materials and methods

2.1. The test set of structures

A test set of 295 proteins was selected from the PDB (Rose

et al., 2011) of X-ray protein structures containing 40–120

residues that were determined to 2.2 Å resolution or better

(Supplementary Table S11). Structures that contained bound

metal ions, nucleic acids or modified residues were excluded

and suitable data quality (R � 0.25, Rfree � 0.35) was required.

This set was further filtered using PISCES (Wang &

Dunbrack, 2005) to eliminate sequence redundancy to a 5%

level. The sequence modelled, of 40–120 residues, was that

provided as a FASTA sequence by the PDB, which does not

necessarily exactly match the experimentally visualized

protein structure.

2.2. Preparation of models

Coarse-grained decoys were rapidly generated by the

Rosetta (Shortle et al., 1998; Simons et al., 1997, 1999) ab initio

protocol followed by rapid side-chain addition and mini-

mization by the fast-relax application. Visual inspection of

some decoys suggested that they were compacted when

compared with the native structure: the side-chain addition

was an attempt to deal with this issue. For each sequence,

fragment libraries were generated informed by secondary-

structure prediction with PSIPRED (Jones, 1999). PDB-

derived fragments with greater than 5% sequence identity

were excluded in order to treat each target as a novel fold. For

each target 1000 decoys were produced, with the modelling

time, which was principally dependent on length, being no

more than one CPU day per case (the CPUs used in this work

were Intel Xeon E5540 or E5640 processors running at 2.53

or 2.67 GHz, respectively). This computation time is easily

achievable for a single-core desktop available to any crystallo-

graphy laboratory. In order to take advantage of the special-

ized side-chain addition tool SCWRL (Canutescu et al., 2003;

Krivov et al., 2009), with its backbone-dependent rotamer

libraries, the side chains that were added during the rapid-

relax procedure of Rosetta were remodelled using SCWRL.

The 1000 decoys were clustered with SPICKER (Zhang &

Skolnick, 2004) and the three largest resulting clusters were

selected for processing. To determine whether the largest

cluster generated by SPICKER contained the most accurate

decoys, each decoy was compared with the deposited structure

using Global Distance Test (GDT) total scores calculated with
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the Local–Global Alignment (LGA) program (Zemla, 2003).

The rank percentile of the most native-like model was deter-

mined as its ordered position in the population.

In order to implement rational truncation, for each of the

top three clusters the 200 decoys most similar to the cluster

centroid as output by SPICKER were structurally aligned in

THESEUS and the residues were ranked along the chain by

structural variance. In only a few cases did the largest cluster

include more than 200 decoys (Supplementary Fig. S1).

Truncation was carried out by incremental removal of the

most divergent residues at intervals of 5% of the sequence

length. At least 20 truncated ensembles were thus generated,

but more were generated for some cases as the number of

residues to be trimmed is rounded down to the nearest integer.

For example, a 100-residue protein would be trimmed in

increments of five residues, resulting in 20 truncated ensem-

bles (per SPICKER cluster) with 100, 95, 90, . . . , 5 residues. A

99-residue protein would be trimmed by four residues at each

step, giving 25 truncated ensembles of 99, 95, 91, . . . , 3 resi-

dues. Overall, the number of truncated ensembles ranged from

20 to 29 for different targets.

Each truncated ensemble was then further subclustered to

derive ensembles with different degrees of structural hetero-

geneity. An r.m.s.d. comparison between all members of each

truncated ensemble was carried

out using MAXCLUSTER. For

each decoy, all other decoys that

were similar within 1 Å were

collected into the subcluster

centred on that decoy. The largest

of these subclusters, which must

contain more than one decoy to

proceed, was structurally aligned

using THESEUS and proceeded

to side-chain treatment. This

process is repeated with 2 and 3 Å

thresholds, typically generating

three search models per truncated

ensemble, but sometimes gener-

ating fewer where no subcluster

contains more than one decoy. If

there were more than 30 struc-

tures in a subcluster then it was

cut down to the first 30 structures.

Three side-chain treatments

were then employed for each

resulting subcluster. Two of these

were the ensembles proceeding as

polyalanine (or glycine) or with

all side chains retained. The third

option, modelling only more reli-

able side chains, trimmed the side

chains previously placed by

SCWRL back to C� for Met, Asp,

Pro, Gln, Lys, Arg, Glu and Ser:

these side chains are statistically

harder to place reliably (Shapo-

valov & Dunbrack, 2007). The

three different modes resulted

in around 180 ensembles per

SPICKER cluster.

2.3. Molecular replacement

All ensembles generated were

fed into MrBUMP (Keegan &

Winn, 2008) using its default

protocol (a version of MrBUMP

later than or including that
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Figure 1
Flowchart illustrating the processing of input structures (ab initio decoys in this work) into MR search
models and their subsequent trialling. Programs employed by AMPLE at various steps are given on the
left. Steps not in italic text are carried out internally by AMPLE. The numbers to the right of the flowchart
indicate typical numbers at different steps: each target will generate three SPICKER clusters, resulting in
around 60 truncated ensembles and eventually the trialling of around 540 search models. On the right are
snapshots during the successful solution of target 3hz7. The largest SPICKER cluster consists of highly
structurally diverse decoys, although a helix and following strands (less visible) are shared between them.
The truncated ensemble in the same orientation shows greater structural homogeneity and has side chains
placed with SCWRL, but still contains decoys that are too diverse to use as an ensemble MR search model.
The search model shown results from subclustering, in this case using an r.m.s.d. threshold of 2 Å, and side-
chain treatment; here, the retention of only more reliably predicted side chains. The behaviour of the top
Phaser placement in SHELXE (an increase of the CC to a value of 49%) was indicative of success; indeed,
the structure output by SHELXE (coloured blue to red from the N-terminus to the C-terminus) is almost
complete and very largely correct compared with the deposited crystal structure (grey).



distributed in CCP4 v.6.3.0 is required) and MR was carried

out by both Phaser (Storoni et al., 2004; McCoy et al., 2005,

2007) and MOLREP (Vagin & Teplyakov, 2010). Default

parameters were used for these methods; the inputs comprise

the number of molecules in the asymmetric unit predicted by

MrBUMP, the resulting estimated molecular weight of the

asymmetric unit and estimated error values of 1 Å (Phaser) or

SIM = 1 (MOLREP).

Only the top solution from each of these programs, repre-

sented by the first member of each placed ensemble, was

analysed. The accuracy of its placement was measured with

the REFORIGIN program of the CCP4 package (Winn et al.,

2011) using C� atoms only. A stricter criterion of success was

then used, namely the ability to proceed to a refined structure

from the MR solution. This is reliably predicted by the

behaviour of a putative solution upon rapid tracing in

SHELXE (Usón et al., 2007; Sheldrick, 2010): 15 runs of

density modification each composed of 20 cycles followed by

main-chain tracing. When the CC score rises and achieves

levels above 25–30 the solution can generally be assumed to

be correctly rebuilt (http://strucbio.biologie.uni-konstanz.de/

ccp4wiki/index.php/SHELX_C/D/E; Rodrı́guez et al., 2012).

We additionally required that the average chain length after

SHELXE should be at least ten residues (Tim Gruene,

personal communication). For comparison, Rfree values were

measured after SHELXE using REFMAC (Murshudov et al.,

2011). We verified that all but one case (a partial success)

could be automatically rebuilt with ARP/wARP (Langer et al.,

2008; Cohen et al., 2008) and/or Buccaneer (Cowtan, 2006) to

an Rfree value of below 45%.

3. Results and discussion

3.1. Generation of ab initio search models by clustering and
truncation

We have developed a method for the processing of ab initio

generated models that applies clustering and truncation to

derive a set of ensembles to be used as search models in MR.

For clarity, we will hereafter refer to the ab initio model

structures as decoys, reserving the term model for search

models destined for MR attempts. Our methodology is

outlined in Fig. 1 and is further described in x2. Briefly, 1000

decoys were generated for each target, built from fragments of

unrelated proteins ab initio, and side chains were placed with

SCWRL (Canutescu et al., 2003; Krivov et al., 2009). The

decoys were clustered with SPICKER (Zhang & Skolnick,

2004) and only decoys from the largest three clusters were

taken further. It is well established that the scoring function

in the initial fragment-assembly step cannot reliably pick out

native-like decoys; the largest cluster(s) were instead treated

as broad fold predictions. The top three clusters were subse-

quently treated separately. The 200 decoys nearest to the

centroid of each cluster were structurally aligned using a

maximum-likelihood algorithm implemented in the program

THESEUS (Theobald & Wuttke, 2006) that can effectively

downweight variable regions and thereby reveal any structu-

rally conserved core that may be present. This alignment

results in a variance score along the target sequence. As

mentioned above, our observations and those of others (Qian

et al., 2007) show that high-variance regions are often in-

accurately modelled. Based on this variance score, our

approach computes 20 or so derivative clusters by progres-

sively eliminating the 5% of sequence with the highest

variance values, then the next highest 5%, and so on until 95%

deletion (see x2). These truncated clusters are then reclustered

in ordered to generate three ensembles containing 2–30

decoys each. These values were considered to be optimal, as

preliminary experiments showed that ensembles containing

more decoys slowed down the MR step unduly. Each resulting
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Figure 2
Inaccuracy in decoys is predicted by their variance after structural
superposition, allowing rational truncation of inaccurate regions and
improving performance. (a) For target 2p5k, the inter-decoy variance
(dark trace) mirrors the mean variance between each decoy and the
deposited native structure (light trace). (b) Successes and failures versus
bins of Patterson correlation coefficients (PCCs) that measure the
correlation between inter-decoy and native–decoy variance values. Most
successes, mainly deriving from SPICKER cluster 1 (black bars) and a
few from cluster 2 (dark grey), originate in clusters of decoys for which
the PCCs are high. Failing targets are indicated by light grey bars and
PCC values derived from their respective top SPICKER clusters: the
distribution of failure is shifted leftwards, indicating that the PCCs were
generally lower and local inaccuracy was thus less well predicted,
impacting on the search-model processing.



ensemble is then treated in three ways with respect to side

chains: (i) all side chains are trimmed back to C�, (ii) all

remain or (iii) only a subset that are generally most reliably

predicted (Shapovalov & Dunbrack, 2007) are kept, with the

others being trimmed to C�. The final set of ensembles, 360–

540 for a given target, is then used for MR, with the results

sent to SHELXE (Usón et al., 2007; Sheldrick, 2010) for

tracing. To test the efficiency of this method, we derived a

nonredundant test set of proteins of 40–120 residues from the

PDB (Rose et al., 2011) determined to 2.2 Å resolution or

better with R < 0.25 and Rfree < 0.35 and for which diffraction

data have been deposited (PDB codes for all test cases are

provided in Supplementary Table S1). Complexes with nucleic

acids or metal ions were eliminated since these ligands cannot

presently be considered in protein ab initio modelling yet can

strongly influence protein conformation.

For our method to work best, our selected decoys to be

transformed into search models should be among the most

accurate produced by Rosetta. To determine whether this was

the case, each decoy selected from the largest three clusters

(the 200 nearest the cluster centroid for each cluster) was

scored and ranked against the deposited structure using the

Global Distance Test (GDT) total score calculated by the

Local–Global Alignment (LGA) program (Zemla, 2003). This

measure is commonly used in ab initio modelling as a measure

of model accuracy, balancing local and global comparisons. In

44% of cases the top cluster contained a model better than the

99th percentile, i.e. one of the best ten models in the popu-

lation. The equivalent figures for the second and third largest

clusters were 31 and 23%, respectively. More importantly, in

97% of cases the top cluster contained a model better than the

70th percentile. Evidently, SPICKER clustering serves as a

computationally inexpensive way to select a subset from the

initial 1000 decoys that is enriched in more accurate structures.

Also key to the success of our method is the ability to

automatically identify and remove inaccurate regions. This

can be achieved since the variability between decoys in each

cluster correlates with their deviation from the deposited

native structure (Qian et al., 2007). This is exemplified here by

the test case 2p5k, in which the C-terminal region could be

predicted from inter-decoy variability as the least reliably

modelled portion (Fig. 2a). Fig. 2(b) further shows this rela-

tionship, represented as a Patterson correlation coefficient

(PCC), across all 295 targets. The PCC value varies widely, but

is clearly biased towards high values, indicating the good

predictive value of inter-decoy variability for inaccuracy. For

example, the PCC is greater than 0.7 for 39% of the 295 cases.

The effect of progressively greater truncation on two examples

is shown in Supplementary Fig. S2. The importance of being

able to identify inaccurate regions is suggested by the high

proportion of successes that were achieved when the PCC

between inter-model variability and deviation from native

structure was high (Fig. 2c); successes only outweighed failures

when PCC > 0.8. Although not the principal focus of this work,

we suggest that the variable/inaccurate regions (generally

loops and termini) are those for which the existence of fewer

intramolecular contacts leads to a less well defined (broader,

shallower) energy well in the vicinity of the native confor-

mation. This would naturally reduce the degree of structural

homogeneity in these regions as fewer decoys would sample

and be retained in the near-native energy basin. In some cases

it may also be true that the local structural variability within

clusters faithfully reflects the lack of a single preferred

conformation in the native structure, e.g regions that would

not have well defined electron density.

3.2. Performance of processed ab initio model clusters in MR

We tested the performance of our cluster-and-truncate

approach on a test set of 295 proteins selected from the PDB.

As explained, the decoys of each target were processed into

360–540 search models. Initially, we assessed whether MR

successfully placed the search model by comparison with

the available crystal structure using the CCP4 program

REFORIGIN (Winn et al., 2011). However, a more stringent

measure of success is the ability of a putative solution to be

automatically rebuilt. We used the SHELXE CC score for a

partially traced structure against the native data (Usón et al.,

2007; Sheldrick, 2010) for this purpose. It has been reported

that solutions for which the CC score, after a rapid procedure

of density modification and main-chain tracing, increased and

attained levels of 25–30% could consistently be automatically

rebuilt (http://strucbio.biologie.uni-konstanz.de/ccp4wiki/

index.php/SHELX_C/D/E; Rodrı́guez et al., 2012). We addi-

tionally imposed a second criterion, an average chain length

of greater than ten residues after SHELXE tracing, which

improves the selection of solutions which may be auto-

matically refined (Tim Gruene, personal communication).

Conversely, a CC score that reduced and remained below this

threshold can reliably be discounted as incorrect. Our

ensembles were partitioned very cleanly into two groups by

SHELXE CC score (Supplementary Fig. S3). We classified

ensembles with CC > 25% and a mean chain length of >10

residues as successes and verified that all but one case (for

which the density indicated partial success) could be auto-

matically rebuilt with ARP/wARP (Langer et al., 2008; Cohen

et al., 2008) and/or Buccaneer (Cowtan, 2006) to an Rfree

value of below 45%. The relationship between CC and

REFORIGIN root-mean-squared difference (r.m.s.d.) calcu-

lated on C� atoms versus the deposited structure is shown in

Supplementary Fig. S4(a) and the relationship with Rfree is

shown in Supplementary Fig. S4(b). The CC negatively

correlates with Rfree (calculated by REFMAC post-SHELXE),

but many ensembles give Rfree values which in themselves

would not guarantee the possibility of automatic rebuilding,

confirming the superiority of the CC score for this purpose.

Supplementary Fig. S4(a) shows that a proportion of successes

derive from inaccurately placed search models. These are

discussed later along with successes from inaccurate models.

It is generally considered that a Phaser translation-function

Z-score (TFZ) of at least 5 is required for successful solution,

and even then model bias may not always allow successful

rebuilding and refinement. This rule of thumb is based on

experience with conventional MR and may not hold when ab
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initio models are used. For our unconventional truncated

ensembles, a TFZ of greater than 14 was required to guarantee

successful tracing (Supplementary Fig. S5). It was also inter-

esting that TFZ scores as low as 2.3 also gave successes; in fact,

66 successful ensembles belonging to 12 test cases had TFZ

scores below 3. These results show the presence of traceable

solutions with statistics that would typically lead to their being

discarded. Typically, poorer density would be expected for

low-TFZ solutions, suggesting that SHELXE is a powerful

tool for bootstrapping from poorer MR results.

As expected, targets for which the ab initio modelling led to

a large top cluster of structurally similar decoys were more

likely to be successfully solved than targets yielding smaller

clusters (Supplementary Fig. S1). We processed decoys from

the three largest SPICKER clusters into search models. We

then assessed the contribution of each cluster to success. Since

the largest cluster often contains the best model in the

population, it was likely that this cluster would give the most

successes, with fewer yielded by the smaller clusters 2 and 3.

Indeed, search models derived from the largest SPICKER

cluster were able to solve 115 cases. Search models from the

second largest cluster solved 100 cases, but only 11 of these

were uniquely solved by this cluster, giving a total of 126

solved cases. For 114 cases the third largest cluster was also

sampled. Although there were 22 successful cases, all were

also solved using search models from clusters 1 or 2; thus,

sampling beyond the two largest clusters is unnecessary.

Using the SHELXE CC score as an indicator, we achieved

126 successes from the 295 cases (43%). This number includes

only the solutions that could be automatically refined and

excludes a few additional marginal cases in which the search

model was well positioned but automatic tracing and refine-

ment failed. Such cases might prove to be soluble after manual

rebuilding. Nevertheless, the success rate of 43% was for

search models deriving from 1000 computationally inexpen-

sive ab initio decoys generated in at most one CPU day per

target. A comparison with the only previous study (Das &

Baker, 2009) is difficult since that work used a different

criterion of success that was based on Phaser TFZ scores. As

discussed later, the use of SHELXE in the present work

allowed the successful tracing of solutions with relatively low

TFZ scores (Supplementary Fig. S5). As well as the different

success criteria, the test set of the earlier paper included

targets that diffracted to lower resolution than our set.

3.3. Characteristics of successful targets

An evaluation of the parameters influencing success high-

lighted target length as well as the type and amount of

secondary structure. Smaller proteins containing fewer than

100 residues are generally more likely to succeed in MR than

longer proteins (Fig. 3). This is as would be expected from the

general reduction in the accuracy of ab initio modelling with

increasing target size. This trend, however, is not necessarily

followed by all-� proteins, for which a consistent success rate

was observed as the length increased and did not decline to

zero at the upper sequence size limit that we imposed of 120

residues. Thus, it is reasonable to expect some success with

even larger all-� proteins in future studies.

Secondary-structure class was another major factor that

affected success. Two methods of assessing secondary struc-

ture were used: the true secondary structure of the deposited

structure as assigned by DSSP (Kabsch & Sander, 1983) and a

PSIPRED prediction (Jones, 1999). Our analyses refer to the

latter since obviously only this would be available to the user

in practice. Here, the proteins were categorized as all-�, all-�
or mixed �/�. Our test set contained 76, 43 and 175 targets,

respectively, in these three categories, as well as one that

lacked regular secondary structure. A high proportion of all-�
cases (80%) were successful, but only one all-� protein (2%)

was successfully solved. Mixed �/� proteins achieved an

intermediate success rate of 37%. The case (PDB entry 2qsk)

that lacked regular secondary-structure elements was not

successful. Such proteins are unlikely to be correctly modelled

using present ab initio methods. As fold class is a determinant

of success, its prediction from PSIPRED results is reported to

the user by AMPLE as a preliminary

indicator of likelihood of success when a

secondary-structure prediction has been

performed locally.

The amount of regular secondary

structure also influences success. No

solutions were found in cases with less

than 26% predicted secondary-structure

content. The number of successful cases

increases almost linearly with the

content of helical structure, with 100%

success in cases where there is 80–90%

helix. This decreases at 90–100% helix

content, likely owing to this group

containing several particularly elon-

gated coiled-coil-like structures which

are not well modelled by Rosetta.

Conversely, as the content of sheet

increases the success rate decreases.
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Figure 3
Characteristics of targets and their influence on MR success. In each of the size-range bins shown,
the ensembles are divided into successes (left bars, dark colours) and failures (right bars, light
colours). The percentage success rate in each size range is shown above the bars: larger targets are
generally harder but successes are seen up to the upper size limit. Shades indicate secondary-
structure classes derived from PSIPRED predictions and show that all-� targets are usually
successful and mixed �/� targets are often successful, but that all-� targets generally fail.



Since secondary-structure prediction is used to select and

rank fragments during ab initio modelling in Rosetta, the

accuracy of the prediction will be important for modelling

accuracy. PSIPRED is one of the most accurate available

methods although, as with most methods, helices are predicted

somewhat more accurately than strands (Zhang et al., 2011).

Indeed, we found that the DSSP results and the PSIPRED

predictions agreed very well, with few exceptions (not shown).

This, and the relatively small performance deficit with strands,

suggest that inaccurate secondary-structure prediction is not

responsible for the lower success rate with all-� proteins.

Instead, the explanation may lie in the fact that ab initio

modelling underperforms for all-� structures (Xu et al., 2011;

see also Supplementary Fig. S6) and/or in specific difficulties

in MR of proteins containing �-sheets. These difficulties arise

from the innate diversity of �-sheets, for example in the

variability of the sheet twist between related structures, which

can stymie MR attempts. Specific problems may also be

generated by discordant �-helices, i.e. observed helical regions

which are strongly predicted as �-structure using secondary-

structure prediction (Gendoo & Harrison, 2011). At least one

protein in our test set (PDB entry 2o9u; monellin) is known to

contain discordant helices (Gendoo & Harrison, 2011) and,

indeed, AMPLE failed to solve its structure.

Finally, space group (Supplementary Fig. S7), solvent

content (Supplementary Fig. S8) and the high-resolution limit

of the diffraction data (at least in the range covered here;

Supplementary Fig. S9) seemed to have little impact on the

success rate.

3.4. Characteristics of successful search models

As expected, many successful search models were derived

from parent SPICKER clusters in which the most accurate

decoy had a GDT total score of greater than 40 (Supple-

mentary Fig. S10), a level usually associated with a native fold

(Zemla, 2003); below this level, the fold is random or non-

native. However, a sizeable proportion came from clusters of

less accurately modelled decoys; the best decoy in the parent

cluster had a GDT total score of <40 in 43% of cases

(Supplementary Fig. S10). The fact that inaccurate decoys can

be transformed into successful search models is a striking

illustration of the power of our cluster-and-truncate approach.

Note that the best model in the parent cluster is not neces-

sarily selected since a maximum of 200 near-centroid decoys

progress to truncation (Fig. 1), but the size of the largest

cluster only rarely exceeds 200 (Supplementary Fig. S1).

Successful cases were solved using at least one search

model, but often several were successful. We therefore

investigated which types of model preparation were the most

successful. The degree of truncation of ensembles was clearly

an important factor in success. While success was achieved

across a full range from truncated ensembles containing as

little as 4.2% of the target sequence to as much as 100% of the

sequence, the highest success rates were obtained with 21–

40% of the target sequence included in the ensemble, corre-

sponding to rather severe truncation (Fig. 4a). Corresponding

data for model size as the number of residues are shown in

Fig. 4(b). Successes were achieved across a wide range of sizes

from three to 116 residues, with the greatest number of

successful models in the size range from 15 to 40 residues.

There is an interplay between the completeness and accuracy

of the ensembles. The truncation step improves the accuracy

of the remaining structure, but simultaneously reduces the MR
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Figure 4
The influence of different modes of search-model preparation on success.
(a) Successful search models are found covering between 4.2 and 100% of
the target sequence, with the highest success rate in the range 21–40%.
The trace indicates the mean coordinate error, expressed as C� r.m.s.d.
compared with the deposited structure, of ensembles in each bin. (b)
Successful search models are found covering between three and 116
residues of the target sequence, with the highest success rate in the 15–40-
residue range. (c) Successful search models include both longer and less
accurate and short but very accurate ensembles. Accuracy is estimated
from the r.m.s.d. over all C� atoms of the first member of the search-
model ensemble. This is an underestimation of the accuracy, since it does
not include other models in the ensemble which may better represent
certain regions of the native structure.



signal by representing a smaller portion of the contents of the

asymmetric unit. Accordingly, we found that poorer models

were successful if very complete, while conversely incomplete

models with �5% of the residues present can sometimes be

successful if they are very accurate (Fig. 4c).

There is an interesting comparison to be drawn with the

approach implemented in ARCIMBOLDO (Rodrı́guez et al.,

2009, 2012), in which the placement of a number of small ideal

model fragments such as �-helices by MR is followed by

density modification and rebuilding using SHELXE.

Although the treatment of potential MR solutions is similar,

our approach differs dramatically in terms of the derivation of

the search models. ARCIMBOLDO works with short ideal-

ized elements of secondary structure, most commonly

�-helices of 10–14 residues, representing as little as 5% of the

target. Our successful search models, which were derived from

ab initio models rather than idealized structures, overlap the

ARCIMBOLDO range in both the number of residues and the

percentage of target represented (Fig. 4), but extend upwards

to 100% of the model and 116 residues (typical cases are

shown in Supplementary Fig. S11). Most commonly, our

successful search models are larger than those dealt with by

ARCIMBOLDO, with 21–40% and 15–40 residues being the

most successful categories. While a direct comparison of the

two approaches is not yet available, ARCIMBOLDO may well

succeed where the ab initio modelling employed here for

obtaining search models fails completely, but the present

method avoids the need for intensive computing that is a

characteristic of ARCIMBOLDO.

Our approach is based on the idea that a sufficiently accu-

rate modelled fragment ensemble can be identified in the ab

initio model set and placed sufficiently accurately to allow

successful MR. Supplementary Fig. S11 shows illustrative

cases over a range of sizes where this idea works in practice.

Indeed, Supplementary Fig. S4(c) shows that many successful

search models have a low error with respect to the deposited

structure and are well placed by MR. However, some

successes are derived from inaccurately modelled search

models (Fig. 4b, Supplementary Fig. S4c) and some result from

inaccurate MR placements (Supplementary Fig. S4), even of

accurate search models (Supplementary Fig. S4c). These more

surprising successes, e.g. ensembles with an r.m.s.d. of >10 Å

(around 5% of the total), were found to be associated

preferentially with coiled-coil structures or other folds

containing long helices. Supplementary Fig. S12 shows illus-

trative cases over a range of model errors and REFORIGIN

placement errors. In these cases globally inaccurate models

may nevertheless accurately recapitulate sufficient helical

structure and broad modes of helical packing for successful

structure solution. Similarly, accurate search models may be

misplaced but positioned in such a way as to yield sufficient

phasing power for tracing to proceed.

Post-truncation, the decoys are subclustered by r.m.s.d. at 1,

2 and 3 Å, with each subcluster then serving as the basis for

the generation of three search models differing in side-chain

treatment. The success rate of ensembles derived from each

class of subcluster is similar: 28% for 1 Å subcluster ensem-

bles, 37% for 2 Å subcluster ensembles and 35% for 3 Å

subcluster ensembles. The 2 Å ensembles may represent a

point at which divergence within the cluster provides useful

information to programs such as Phaser regarding reliability,

but the divergence has not yet reached a degree at which

additional noise outweighs this advantage.

The number of (processed) decoys in each subcluster varies

according to the results of the subclustering, but we imposed a

limit of 30 for reasons of speed. Since subclusters of 30 decoys

produced the most successful search models, it may be that

allowing greater numbers of models in the ensemble would

increase the success rate at the expense of greater computa-

tional demands. Interestingly, there was a relationship

between the r.m.s.d. radius of the subcluster and the number

of decoys needed for success. For subclusters with a 1 Å radius

that gave rise to successful search models, only 56% had the

maximum of 30 models. Furthermore, successes were achieved

with search models deriving from 1 Å radius subclusters

containing from two to 30 decoys. In contrast, for successful

subclusters with a 2 Å radius 77% have 30 decoys; for those

with a radius of 3 Å this rises to 90%. Hence, it seems to be the

case that as structural diversity between models in a subcluster

rises, an increased number of component decoys is required

for successful search models to derive from it.

The side chains of each subcluster are treated in three ways:

they may be represented as polyalanine, retain all side chains

previously added or keep only those side chains that are

statistically more reliably predicted. There is little difference

in success between the different side-chain treatments, but

overall the search models with just the reliable side chains

performed best. 35% of these were successful, while the

figures for polyalanine and all-side-chain search models were

30 and 34%, respectively.

We observed that for some proteins most search models

were successful, while for others only one was successful. At

one extreme, 497 of 663 search models for target 1gvd were

successful. On the other hand, 15 of the 126 successful cases

were solved by only one search model. That is to say, only a

certain truncation with one particular treatment of side chains
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Figure 5
Processing modes of singleton solutions, i.e. search models uniquely
capable of solving their target. The completeness of the search model
is plotted against the tightness of the subclustering, with side-chain
modelling and the SPICKER cluster indicated by the symbols shown in
the legend.



could give success in these cases. Notably, such singleton

successes included examples of all three modes of side-chain

treatment and spanned a range of truncations containing 10–

81% of the target sequence (Fig. 5) and a range of sizes from

ten to 44 residues. Singleton successful search models also

derived from both the top and second largest SPICKER

clusters (not shown). Taken together, these findings justify the

structure of our pipeline and demonstrate the sometimes very

narrow requirements for MR success, highlighting the benefits

of our automated approach that comprehensively samples

ensembles and their derivatives without the requirement for

user intervention.

3.5. AMPLE implementation

The program AMPLE was written in Python to control the

procedure of model generation, processing, molecular

replacement and rebuilding. It is available as part of the CCP4

package (Winn et al., 2011; http://www.ccp4.ac.uk). When

given a FASTA sequence file, AMPLE will call locally

installed Rosetta to generate ab initio models using the

sequence and the default ab initio modelling protocol. Frag-

ments may be generated locally or can be accepted from the

Robetta server (http://robetta.bakerlab.org/). AMPLE can

also accept pre-made models in the form of a folder containing

individual PDB files. This allows the input of structures from

any origin, including other modelling programs and NMR

ensembles. Currently, the models must each have the same

sequence. AMPLE calls MrBUMP (Keegan & Winn, 2008),

which acts as a wrapper for both Phaser (Storoni et al., 2004;

McCoy et al., 2005, 2007) and MOLREP (Vagin & Teplyakov,

2010). The two programs are complementary, with some

overlap, but each also has unique successes (Supplementary

Fig. S13). For example, 74 cases were solved by both programs,

but Phaser alone solved a further 50 unique cases while

MOLREP added a further two. Currently, only the first MR

placement from the results of each program is tested using

SHELXE (Usón et al., 2007; Sheldrick, 2010) tracing as a

reliable indicator of a correct solution that can be rebuilt.

During operation, AMPLE reports on two key characteristics

that are somewhat predictive of success. Firstly, if a local

secondary-structure prediction has been performed AMPLE

will assess the fold class of the target (all-�, mixed �/� or all-�)

and report that the chance of success is high, intermediate or

low, respectively. Secondly, once the Rosetta modelling has

finished, AMPLE will report on the likely success rate based

on the size of the largest SPICKER cluster (Supplementary

Fig. S1). AMPLE can employ multiple cores to parallelize

both the modelling and MR steps on clusters and multi-core

workstations. When run on a single computer (not a cluster,

for technical reasons), AMPLE stops as soon as a successful

solution is indicated by SHELXE.

4. Conclusion

We have presented a novel approach to processing rapidly

obtained ab initio decoys into successful MR search models.

Importantly, the computation time required is such that single-

core desktop machines available to any crystallography

laboratory are sufficient: no access to clusters is required. Our

approach is implemented in the program AMPLE, which is

already available as part of the CCP4 package. Our thorough

characterization of the performance of AMPLE provides

helpful guidelines for the crystallographer to assess the chance

of their target being successfully solved. All-� proteins are

particularly favourable (80% success) and mixed �/� targets

were solved in 36% of cases, but all-� targets are presently

unlikely to succeed. Once the user has obtained ab initio

decoys, the size of the largest cluster is somewhat predictive of

success (Supplementary Fig. S1), with larger sizes being indi-

cative of structural convergence and more reliable predictions.

Most importantly, a CC of >25% after brief rebuilding with

SHELXE is reliably indicative of solutions which can then be

automatically traced. Although the test set here was limited to

a maximum of 120 residues, success with some of the largest

targets suggests that some proteins longer than this may be

tractable. Thus, with its simple interface to Rosetta, we argue

that AMPLE brings ab initio modelling for MR to the crys-

tallographer in a convenient and accessible form for the first

time. Further applications of the core cluster-and-truncate

methodology to cases of distant homology, to missing domains

and to NMR structures are under active exploration.

We gratefully acknowledge the Biotechnology and Bio-

logical Sciences Research Council for funding (award BB/
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